Benefits of functional programming
Benefits of functional programming
By Ravindre Ramjiawan
4 min read
Writing code in a functional way can help to solve complex problems in a efficient and in a reusable manner, for creating clean and maintainable software.
- Authors
- Name
- Ravindre Ramjiawan
- linkedinRavindre Ramjiawan
Table of Contents
- Background
- Imperative vs. Declarative
- Reuse
- Point-free
- Higher-order function
- Purity
- Referential Transparency
- Recursion
- Memoization
- Intermediate values
- Pipe & Compose
- Curry
- Conclusion
Background
The functional programming1 paradigm2 has been around since the early 1930s. It has its roots in a mathematical theory named lambda calculus3, a notation for describing mathematical functions and programs. In lambda calculus functions are first-class citizens4, meaning functions can be used as input and returned as output. JavaScript also treats functions as first-class citizens which is the reason why we can apply functional programming in JavaScript.
Imperative vs. Declarative
The benefit of writing code in a functional way is that functional programming focuses on what should be done rather than on how it should be done. This is also known as imperative5 and declarative6 programming, where imperative does it in a procedural7 style and declarative in a functional style. It can also be described as explicit and implicit programming.
Imperative
// Focuses on how it is done
const imperativeDoubleMap = (numbers) => {
// Create a new array to push our numbers to
const doubledNumbers = []
// Loop through the numbers array
for (let i = 0; i < numbers.length; i += 1) {
// Push the doubled number to our new array
doubledNumbers.push(numbers[i] * 2)
}
// Return the doubled numbers array
return doubledNumbers
}
// Results in our numbers being doubled
console.log(imperativeDoubleMap([2, 3, 4])) // [4, 6, 8]
Declarative
// Focuses on what should be done
// The map function loops over the numbers array for us
// and creates a new array based on what is returned
// Arrow functions have an implicit return
const declarativeDoubleMap = (numbers) => numbers.map((number) => number * 2)
// Results in our numbers being doubled
console.log(declarativeDoubleMap([2, 3, 4])) // [4, 6, 8]
As shown above, both programming paradigms yield the same result but which one is easier to understand?
Reuse
In functional programming the focus on the reuse8 of logic is a very important concept. Reusing functions avoids writing code from scratch and adheres to the DRY principle9.
Before
const imperativeDoubleMap = (numbers) => {
const doubledNumbers = []
for (let i = 0; i < numbers.length; i += 1) {
// The logic for doubling numbers is inside the for loop
// Not reusable unless you put it in a (you guessed it) function
doubledNumbers.push(numbers[i] * 2)
}
return doubledNumbers
}
// The logic of doubling numbers is already inside a function which map accepts
// Meaning we can now extract it to its own reusable function
const declarativeDoubleMap = (numbers) => numbers.map((number) => number * 2)
After
// Reusable function for doubling a number
const double = (number) => number * 2
const imperativeDoubleMap = (numbers) => {
const doubledNumbers = []
for (let i = 0; i < numbers.length; i += 1) {
// Logic of doubling numbers is now handled through the reusable function
doubledNumbers.push(double(numbers[i]))
}
return doubledNumbers
}
// Same idea but making this a lot more concise
const declarativeDoubleMap = (numbers) => numbers.map((number) => double(number))
// As expected our numbers are still doubled
console.log(imperativeDoubleMap([2, 3, 4])) // [4, 6, 8]
console.log(declarativeDoubleMap([2, 3, 4])) // [4, 6, 8]
Point-free
Functional programming allows for the ability to write code in point-free10 programming style. This means that you can omit function arguments if they match the parameters of the function you pass it to.
const double = (number) => number * 2
// The map function expects a function that accepts a value argument
// on its first parameter position
// Since our double function does exactly that, we can just pass it in directly
// and map will call the double function for us
const declarativeDoubleMap = (numbers) => numbers.map(double)
// As expected we get the same results
console.log(declarativeDoubleMap([2, 3, 4])) // [4, 6, 8]
Higher-order function
Functional programming has the concept of higher-order functions11. This means a function that takes a function as an argument and/or returns a function as its output.
const double = (number) => number * 2
// The array function "map" is a higher-order function
// because it takes in a function as argument
const numbersMap = (numbers) => numbers.map(double)
// Multiply is a higher-order function because it returns a function
const multiply = (a) => (b) => a * b
// By calling multiply with the first argument
// we get our final function back to be used
const multiplyBy3 = multiply(3)
console.log(multiplyBy3(4)) // 12
Purity
In functional programming functions are expected to be pure12. This means a function that has no external dependencies other than its given inputs and always produces the same output. This makes pure functions deterministic13 and are easier to test.
// Pure function
const double = (number) => number * 2
// No matter how often this function is called with the same arguments
// it will always produce the same result
console.log(double(2)) // 4
console.log(double(2)) // 4
console.log(double(2)) // 4
Impure
A function that has side effects14 is called impure. This means a function that relies on external dependencies such as global variables or shared states and mutates or produces randomized values. This makes impure functions nondeterministic15 and are harder to test. Side effects can lead to unexpected results, frustrations, and bugs.
// Some global state
const globalState = { number: 0 }
// Impure function
const double = (number) => (globalState.number += number * 2)
// No matter how often this function is called with the same arguments
// it will always produce a different result
console.log(double(2)) // 4
console.log(double(2)) // 8
console.log(double(2)) // 12
Referential Transparency
Another positive aspect of functional programming are referentially transparent16 functions. This means that the output of a function can be replaced by its value directly without having any influence on the program. This is only possible if a function is pure. This allows for compilers17 to perform code optimizations18 by swapping out function calls with their return values.
// A pure function that is also referentially transparent
const add = (a, b) => a + b
const something = () => add(1, 2) + 5
// A compiler could swap out the add function call for its return value
const something2 = () => 3 + 5
// Both functions return the same output
console.log(something()) // 8
console.log(something2()) // 8
Recursion
Another benefit of functional programming is a concept called recursion19. This means a function that keeps calling itself until the desired result is achieved. Recursion is a form of looping also known as the recursive loop.
// Factorial
const factorial = (number) => {
// Base case
if (number < 2) return 1
// Here we call ourselves to enter recursion
// Until the base case is hit it will keep calling itself
// Hence it being called the recursive loop
return number * factorial(number - 1)
}
console.log(factorial(10)) // 3628800
Memoization
Functional programming allows for a technique called memoization20. Since functions are expected to be pure and therefore deterministic we can cache the output of computationally expensive function calls.
// The memoize function will normally be provided
// by a functional programming library
// Memoize is a higher-order function since it accepts a function as argument
// and also returns a function as output
const memoize = (func) => {
// The cache is simply an object which will be populated by key value pairs
const cache = {}
// Return a function that can accept any amount of arguments
return (...args) => {
// To create a unique key we simply turn them into a string
const key = JSON.stringify(args)
// If the key exists in the cache we take can return value
if (cache[key]) return cache[key]
// Otherwise we call the function and store its output in the cache
return (cache[key] = func(args))
}
}
// Function to measure execution time
// measureTime is also a higher order function just like memoize
const measureTime = (func) => {
return (...args) => {
// Start track of time
const startTime = performance.now()
// Execute function
const result = func(args)
// End track of time
const endTime = performance.now()
// Log the difference in time taken
console.log(`Time taken: ${endTime - startTime} milliseconds`)
return result
}
}
// Fibonacci sequence
const fibonacci = (number) => {
// Base case
if (number < 2) return number
// Fibonacci enters recursion twice
return fibonacci(number - 1) + fibonacci(number - 2)
}
// Memoize our fibonacci function
const memoizedFibonacci = measureTime(memoize(fibonacci))
// On our first call fibonacci has to be calculated
// Subsequent calls with the same arguments will not recalculate fibonacci
// since it will return the already calculated value from the cache
console.log(memoizedFibonacci(40)) // 102334155 - Time taken: 700 milliseconds
console.log(memoizedFibonacci(40)) // 102334155 - Time taken: 0 milliseconds
console.log(memoizedFibonacci(40)) // 102334155 - Time taken: 0 milliseconds
Intermediate values
Functional programming enables us to eliminate intermediate values. An intermediate value is often a temporary variable created to store partial results for the next step in a process leading up to the final output. Often these intermediate values are not used further in the program and just add syntactic noise21 to the code.
Before
const double = (number) => number * 2
const square = (number) => number * number
const subtract = (number) => number - 1
const calculateNumber = (number) => {
// As you can see we are storing each part of the process in a temporary variable
// To be used by the next step in the process
const doubledNumber = double(number)
const squaredNumber = square(doubledNumber)
const finalResult = subtract(squaredNumber)
return finalResult
}
console.log(calculateNumber(4)) // 63
After
const double = (number) => number * 2
const square = (number) => number * number
const subtract = (number) => number - 1
// Instead we can let the intermediate results be represented by the inputs and outputs of functions instead
// by passing functions to each other producing the same result but more succinct
const calculateNumber = (number) => subtract(square(double(number)))
console.log(calculateNumber(4)) // 63
This demonstrates the flow of intermediate values going from input to output from one function to the next. This is also known as function composition22. The downside is that this can quickly become unreadable if we keep nesting23 more functions.
Pipe & Compose
In functional programming there is the concept of piping and composing. Pipe executes functions in succession from left to right. This allows for a natural reading experience (at least in the western hemisphere) when trying to follow the execution24 flow. Compose executes functions in succession from right to left. Compose reflects exactly how functions would execute if you would not use compose at all, namely from the innermost function to the outermost function as seen in the previous example.
Pipe
// The pipe function will normally be provided by a functional programming library
// Pipe is a higher-order function
// Pipe accepts any amount of functions which will return a function that accepts a value
// By using reduce we accumulate the outputs of function starting from the left
// and pass to the next function to the right
// Until the last function is called
const pipe =
(...funcs) =>
(value) =>
funcs.reduce((currentValue, func) => func(currentValue), value)
const double = (number) => number * 2
const square = (number) => number * number
const subtract = (number) => number - 1
// Pipe flows from left to right
const calculateNumber = pipe(double, square, subtract)
console.log(calculateNumber(4)) // 63
Compose
// The compose function will normally be provided by a functional programming library
// Compose is a higher-order function
// Compose accepts any amount of functions which will return a function that accepts a value
// By using reduceRight we accumulate the outputs of function starting from the right
// and pass to the next function to the left
// Until the first function is called
const compose =
(...funcs) =>
(value) =>
funcs.reduceRight((currentValue, func) => func(currentValue), value)
const double = (number) => number * 2
const square = (number) => number * number
const subtract = (number) => number - 1
// Compose flows from right to left
const calculateNumber = compose(double, square, subtract)
console.log(calculateNumber(4)) // 18
As shown, this allows us to have the benefits of function composition and not sacrifice any readability.
Curry
Another benefit of functional programming is a concept called currying25. Currying can be useful when you want to create a new function that has some arguments already fixed, or when you want to pass a function with a smaller number of arguments to another function that expects a function with a larger number of arguments.
// The curry function will normally be provided by a functional programming library
// Curry is a higher-order function and keeps returning functions until the final
// argument is passed
const curry = (func) =>
function curried(...args) {
if (args.length >= func.length) return func(...args)
return (...moreArgs) => curried(...args, ...moreArgs)
}
// Add function with multiple arguments
const add = (a, b, c) => a + b + c
// Curried version of add
const curriedAdd = curry(add)
console.log(curriedAdd(1)(2)(3)) // 6
console.log(curriedAdd(1, 2)(3)) // 6
console.log(curriedAdd(1)(2, 3)) // 6
console.log(curriedAdd(1, 2, 3)) // 6
Conclusion
I hope this gives a better understanding of how functional programming can help reduce code complexity in a code base and allow for reliable, efficient, reusable, and maintainable code. For further insight on the topic, I highly recommend checking out some popular functional programming libraries such as Lodash or Ramda which provide a large number of utility functions that are optimized for performance and conciseness. More information about the theoretical side of functional programming can be found by checking out this website.
Footnotes
Upcoming events
Drupal CMS Launch Party
Zoals sommigen misschien weten wordt op 15 Januari een nieuwe distributie van Drupal gelanceerd. Namelijk Drupal CMS (ook wel bekend als Starshot). Om dit te vieren gaan we op onze campus een klein eventje organiseren. We gaan die dag samen de livestream volgen waarbij het product gelanceerd wordt. De agenda is als volgt: 17u – 18u30: Drupal CMS livestream met taart 18u30 – 19u00: Versteld staan van de functionaliteiten 19u – 20u: Pizza eten en verder versteld staan van de functionaliteiten Laat ons zeker weten of je komt of niet door de invite te accepteren! Tot dan!
| Coven of Wisdom Herentals
Go to page for Drupal CMS Launch PartyCoven of Wisdom - Herentals - Winter `24 edition
Worstelen jij en je team met het bouwen van schaalbare digitale ecosystemen of zit je vast in een props hell met React of in een ander framework? Kom naar onze meetup waar ervaren sprekers hun inzichten en ervaringen delen over het bouwen van robuuste en flexibele applicaties. Schrijf je in voor een avond vol kennis, heerlijk eten en een mix van creativiteit en technologie! 🚀 18:00 – 🚪 Deuren open 18:15 – 🍕 Food & drinks 19:00 – 📢 Building a Mature Digital Ecosystem - Maarten Heip 20:00 – 🍹 Kleine pauze 20:15 – 📢 Compound Components: A Better Way to Build React Components - Sead Memic 21:00 – 🙋♀️ Drinks 22:00 – 🍻 Tot de volgende keer? Tijdens deze meetup gaan we dieper in op het bouwen van digitale ecosystemen en het creëren van herbruikbare React componenten. Maarten deelt zijn expertise over het ontwikkelen van een volwassen digitale infrastructuur, terwijl Sead je laat zien hoe je 'From Props Hell to Component Heaven' kunt gaan door het gebruik van Compound Components. Ze delen praktische inzichten die je direct kunt toepassen in je eigen projecten. 📍 Waar? Je vindt ons bij iO Herentals - Zavelheide 15, Herentals. Volg bij aankomst de borden 'meetup' vanaf de receptie. 🎫 Schrijf je in! De plaatsen zijn beperkt, dus RSVP is noodzakelijk. Dit helpt ons ook om de juiste hoeveelheid eten en drinken te voorzien - we willen natuurlijk niet dat iemand met een lege maag naar huis gaat! 😋 Over iO Wij zijn iO: een groeiend team van experts die end-to-end-diensten aanbieden voor communicatie en digitale transformatie. We denken groot en werken lokaal. Aan strategie, creatie, content, marketing en technologie. In nauwe samenwerking met onze klanten om hun merken te versterken, hun digitale systemen te verbeteren en hun toekomstbestendige groei veilig te stellen. We helpen klanten niet alleen hun zakelijke doelen te bereiken. Samen verkennen en benutten we de eindeloze mogelijkheden die markten in constante verandering bieden. De springplank voor die visie is talent. Onze campus is onze broedplaats voor innovatie, die een omgeving creëert die talent de ruimte en stimulans geeft die het nodig heeft om te ontkiemen, te ontwikkelen en te floreren. Want werken aan de infinite opportunities van morgen, dat doen we vandaag.
| Coven of Wisdom Herentals
Go to page for Coven of Wisdom - Herentals - Winter `24 editionThe Test Automation Meetup
PLEASE RSVP SO THAT WE KNOW HOW MUCH FOOD WE WILL NEED Test automation is a cornerstone of effective software development. It's about creating robust, predictable test suites that enhance quality and reliability. By diving into automation, you're architecting systems that ensure consistency and catch issues early. This expertise not only improves the development process but also broadens your skillset, making you a more versatile team member. Whether you're a developer looking to enhance your testing skills or a QA professional aiming to dive deeper into automation, RSVP for an evening of learning, delicious food, and the fusion of coding and quality assurance! 🚀🚀 18:00 – 🚪 Doors open to the public 18:15 – 🍕 Let’s eat 19:00 – 📢 First round of Talks 19:45 – 🍹 Small break 20:00 – 📢 Second round of Talks 20:45 – 🍻 Drinks 21:00 – 🙋♀️ See you next time? First Round of Talks: The Power of Cross-browser Component Testing - Clarke Verdel, SR. Front-end Developer at iO How can you use Component Testing to ensure consistency cross-browser? Overcoming challenges in Visual Regression Testing - Sander van Surksum, Pagespeed | Web Performance Consultant and Sannie Kwakman, Freelance Full-stack Developer How can you overcome the challenges when setting up Visual Regression Testing? Second Round of Talks: Omg who wrote this **** code!? - Erwin Heitzman, SR. Test Automation Engineer at Rabobank How can tests help you and your team? Beyond the Unit Test - Christian Würthner, SR. Android Developer at iO How can you do advanced automated testing for, for instance, biometrics? RSVP now to secure your spot, and let's explore the fascinating world of test automation together!
| Coven of Wisdom - Amsterdam
Go to page for The Test Automation Meetup